Adopting a ternary strategy is an effective approach to enhance the power conversion efficiency (PCE) in organic solar cells (OSCs). Previous research on highly efficient ternary systems has predominantly focused on those based on highly crystalline dual small molecule acceptors. However, limited attention has been given to ternary systems utilizing dual polymer donors. Herein, by incorporating the fluorine and alkylsilyl substitution, a new polymer donor named PX1 is developed, which demonstrates strong crystallinity and excellent miscibility with polymer PM6. Moreover, PX1 broadens and enhances the absorption properties of the PM6:L8-BO blends, and its molecular orbital energy level is situated between those of PM6 and L8-BO, highlighting its suitability as a third component. Introducing 20% PX1 into the PM6:L8-BO system resulted in a high PCE of 18.82%. PX1 effectively suppresses charge recombination and reduces energy losses, while also serving as a morphology modulator that enhances the crystallization and improves the molecular packing order of the active layer by shortening the π-π stacking distance and extending crystalline coherence length. These factors collectively contribute to the performance improvements in ternary devices. This study demonstrates that employing a dual polymer donor strategy is a promising approach for achieving high-performance ternary OSCs.
Read full abstract