Early pubertal timing is associated with adverse health in adulthood. These effects may be mediated by DNA methylation changes associated with accelerated cellular aging and mortality risk, but few studies tested associations between pubertal timing and epigenetic markers in adulthood. Additionally, pubertal timing effects often vary by sex and are understudied in diverse youth. Thus, this longitudinal study examined links between pubertal timing and later epigenetic aging and mortality risk together with sex differences in predominantly Black youth. Participants included 350 individuals (58% female, 42% male; 80% Black, 19% non-Hispanic White). Perceived pubertal timing relative to peers and self-reported phenotypic pubertal timing based on age-adjusted Tanner scores were assessed during early adolescence (Mage = 13) whereas epigenetic aging (GrimAge, DunedinPace of Aging Calculated from the Epigenome, and PhenoAge) and mortality risk were measured during young adulthood (Mage = 27). After adjusting for covariates (smoking, body mass index, family income, early-life stress, race/ethnicity, sex, parenthood), early pubertal timing (both perceived and phenotypic) predicted higher epigenetic mortality risk, and early phenotypic pubertal timing predicted accelerated DunedinPace of Aging Calculated from the Epigenome. Both perceived and phenotypic early pubertal timing were correlated with accelerated GrimAge. Off-time phenotypic pubertal timing (i.e., early and late) was associated with accelerated PhenoAge in males only whereas perceived off-time pubertal timing was unexpectedly linked with lower PhenoAge acceleration. These findings extend prior research by linking two dimensions of early pubertal timing with epigenetic mortality risk and accelerated aging in racially diverse young adults and showing nonlinear effects on PhenoAge acceleration that differ across pubertal timing measures and show some sex differences. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Read full abstract