The increasing awareness of the importance of a clean and sustainable environment, coupled with the rapid growth of both population and technology, has instilled in people a strong inclination to address the issue of wastewater treatment. This global concern has prompted individuals to prioritize the proper management and purification of wastewater. Organic pollutants are very persistent and due to their destructive effects, it is necessary to remove them from wastewater. In the last decade, porous organic polymers (POPs) have garnered interest among researchers due to their effectiveness in removing various types of pollutants. Porous biopolymers seem to be suitable candidates among POPs. Sustainable consumption and environmental protection, as well as reducing the consumption of toxic chemicals, are the advantages of using biopolymers in the preparation of effective composites to remove pollutants. Composites containing porous biopolymers, like other POPs, can remove various pollutants through absorption, membrane filtration, or oxidative and photocatalytic effects. Although composites based on porous biopolymers shown relatively good performance in removing pollutants, their insufficient strength limits their performance. On the other hand, in comparison with other POPs, including covalent organic frameworks, they have weaker performance. Therefore, porous organic biopolymers are generally used in composites with other compounds. Therefore, it seems necessary to research the performance of these composites and investigate the reasons for using composite components. This review exhaustively investigates the recent progress in the use of composites containing porous biopolymers in the removal of organic pollutants in the form of adsorbents, membranes, catalysts, etc. Information regarding the mechanism, composite functionality, and the reasons for using each component in the construction of composites are discussed. The following provides a vision of future opportunities for the preparation of porous composites from biopolymers.