Remote sensing road extraction based on deep learning is an important method for road extraction. However, in complex remote sensing images, different road information often exhibits varying frequency distributions and texture characteristics, and it is usually difficult to express the comprehensive characteristics of roads effectively from a single spatial domain perspective. To address the aforementioned issues, this article proposes a road extraction method that couples global spatial learning with Fourier frequency domain learning. This method first utilizes a transformer to capture global road features and then applies Fourier transform to separate and enhance high-frequency and low-frequency information. Finally, it integrates spatial and frequency domain features to express road characteristics comprehensively and overcome the effects of intra-class differences and occlusions. Experimental results on HF, MS, and DeepGlobe road datasets show that our method can more comprehensively express road features compared with other deep learning models (e.g., Unet, D-Linknet, DeepLab-v3, DCSwin, SGCN) and extract road boundaries more accurately and coherently. The IOU accuracy of the extracted results also achieved 72.54%, 55.35%, and 71.87%.