Summary We examine the asymptotic and small sample properties of model-based and robust tests of the null hypothesis of no randomized treatment effect based on the partial likelihood arising from an arbitrarily misspecified Cox proportional hazards model. When the distribution of the censoring variable is either conditionally independent of the treatment group given covariates or conditionally independent of covariates given the treatment group, the numerators of the partial likelihood treatment score and Wald tests have asymptotic mean equal to 0 under the null hypothesis, regardless of whether or how the Cox model is misspecified. We show that the model-based variance estimators used in the calculation of the model-based tests are not, in general, consistent under model misspecification, yet using analytic considerations and simulations we show that their true sizes can be as close to the nominal value as tests calculated with robust variance estimators. As a special case, we show that the model-based log-rank test is asymptotically valid. When the Cox model is misspecified and the distribution of censoring depends on both treatment group and covariates, the asymptotic distributions of the resulting partial likelihood treatment score statistic and maximum partial likelihood estimator do not, in general, have a zero mean under the null hypothesis. Here neither the fully model-based tests, including the log-rank test, nor the robust tests will be asymptotically valid, and we show through simulations that the distortion to test size can be substantial.
Read full abstract