A previous paper of the authors (Duck & Stephen, J. Fluid Mech., vol. 917, 2021, A56) considered the effect of three-dimensional, temporally periodic, linear and incompressible disturbances on a Blasius boundary layer, in particular when the disturbance wavelength is both comparable to and longer than the boundary-layer thickness. This previous study revealed that, unlike the two-dimensional counterpart, a mode exists that exhibits regimes of downstream spatial growth. In this paper we extend the analysis to the compressible regime, based on the boundary-region equations methodology. The aforementioned unstable mode is seen to persist into the compressible regime, and is studied using a combination of numerical and asymptotic methods. The paper adopts several approaches. First is a numerical approach in which the spatial development of the disturbances is assessed. This then leads to a consideration of the far-downstream behaviour, using (several) asymptotic limits. Of some note, in addition to unstable modes found in the incompressible case, is the existence of a further class of instability, not found in the incompressible case (which is also analysed asymptotically), corresponding to what amounts to an inviscid instability. The far-downstream analysis enables a (sub-)classification into entropy and non-entropy modes. The former, according to this analysis, are spatially damped, with one caveat, as revealed by our marching procedure, which highlights how spatial development of disturbances can be important.
Read full abstract