ABSTRACT Southern stem rot (SSR) of peanut, caused by Athelia rolfsii, is commonly influenced by environmental conditions. Defoliation from late leaf spot (LLS), caused by Nothopassalora personata, alters canopy structure and has the potential to affect microclimates. A better understanding of the potential interaction between SSR and LLS through potential microclimate modification might contribute to improved disease management. Eight field experiments were conducted from 2016 to 2019 to investigate the effect of LLS defoliation on peanut canopy and soil microclimates and SSR development. To encourage different levels of LLS defoliation, 3 spray programs (3, 4 and 6 chlorothalonil applications) were applied across four cultivars varying in susceptibility to LLS and SSR via a split-plot design. Defoliation was rated every 2 weeks from 75 days after planting (DAP) to harvest. Canopy and soil temperature and soil moisture were recorded from 75 to 140 DAP. Interaction of LLS spray program and peanut cultivar significantly affected LLS defoliation in nearly all trial years except in 2019 where low disease pressure occurred due to dry weather. Significant relationships were observed between LLS defoliation and daily maximum canopy temperatures and between area under LLS defoliation curve (AUDC) and slope of daily canopy temperature change. The influence of LLS defoliation on the microclimate was generally erratic. The relationship between AUDC and SSR was not significant. Results from this study suggest that the influence of LLS on microclimate was insufficient to substantially affect SSR development.
Read full abstract