A series of Y1−x Ca x (Ba1−y Ce y )2Cu3O7−δ (0≤x≤0.3, 0≤y≤0.3) polycrystalline superconductor samples were prepared using the solid-state reaction technique. The phase identification, crystal structure, and superconducting transition temperature (T c ) were studied by means of X-ray diffraction (XRD) and resistivity measurements. The results indicted that the phase of samples changed from orthorhombic phase to tetragonal phase with increasing Ca concentration x and Ce concentration y, and Ce did not form the superconducting structure. The lattice constants had a little change. The a-axis and c-axis lattice parameters increased. The b-axis lattice parameter decreased. The T c and resistance had an obvious dropping tendency with increasing Ca and Ce concentrations. The transition width became sharper with the increase of x (=y). We drew a conclusion that the Ce-doping had an effect for strengthening the intergrain connectivity, and it counteracted the weakening effect of Ca-doping which introduced the hole causing a reduction in the interlayer coupling strength.
Read full abstract