Water movement and its distribution uniformity in the soil are essential for the design of sprinkler irrigation systems. They are both crucial factors influencing nutrient migration and the productivity of crops. In this study, a new numerical simulation method was proposed to investigate the soil water movement in sprinkler irrigation under nonuniform infiltration boundary conditions using COMSOL software. Besides, two soil tank experiments were conducted to test the reliability of the simulation model. Finally, the model was applied to evaluate the effects of sprinkler irrigation uniformity, soil texture, and initial soil water content on soil wetting patterns and soil water content uniformity. The results showed that the COMSOL-2D predictions of the vertical wetting fronts were in good agreement with the experimental data. The soil texture and initial soil water content influenced the soil wetting pattern and the risks of surface runoff and deep percolation in sprinkler irrigation systems. When the water application rate was 11.35 mm h−1 with an irrigation duration of 10 h, it was easy to cause surface runoff in silty clay loam while deep percolation in loamy sand. Additionally, when the initial soil water content is high, it should be better to avoid irrigation or cut down the irrigation duration to prevent percolation. The water within the soil was more uniformly distributed than that applied through a sprinkler irrigation system. The uniformity coefficient of soil water content distribution (CUs) increased from 87.75 % to 95.56 %, as the uniformity coefficient of sprinkler irrigation (CU) increased from 40.74 % to 82.41 %. Although a higher initial soil water content brought a higher soil CUs value, it also led to a higher risk of percolation. The experimental and simulation results indicated that the COMSOL-2D model could be used to accurately simulate soil water movement in sprinkler irrigation and determine the suitable operation mode of low-pressure sprinklers.
Read full abstract