Abstract This paper presents the vibroacoustic response of pure functionally graded (FG) plates under transient loading of mechanical nature. The functionally graded plate is modeled using the conventional first-order shear deformation theory (FSDT) to incorporate the effects of transverse shear and rotary inertia. The mid-surface variables are determined using the finite element method. Transient structural response is determined using Newmark Beta time marching scheme and the acoustic pressure in the free field is obtained using the time-domain Rayleigh integral. The effective material properties of the FG plate and the transient response of both the structural and acoustic fields have been computed in matlab. The influence of the volume fraction index, thickness ratio, and boundary conditions of pure FG plate on its transient vibroacoustic response is investigated by a detailed parametric study.