Abstract
Slamming against the wet deck of a multihull vessel in head sea waves is studied analytically and numerically. The theoretical slamming model is a two-dimensional, asymptotic method valid for small local angles between the undisturbed water surface and the wet deck in the impact region. The disturbance of the water surface as well as the local hydroelastic effects in the slamming area are accounted for. The elastic deflections of the wet deck are expressed in terms of "dry" normal modes. The structural formulation accounts for the shear deformations and the rotatory inertia effects in the wet deck. The findings show that the slamming loads on the wet deck and the resulting elastic stresses in the wet deck are strongly influenced by the elasticity of the wet deck structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.