We examined the effects of hypertonic saline (HS) on inflammatory, metabolic variables, and bacterial translocation (BT) in rats submitted to intestinal obstruction and ischemia (IO). Male Wistar rats were submitted to IO and treated, 2 h thereafter, with lactated Ringer's (LR) (4 mL/kg per 5 min, i.v.) or HS (7.5% NaCl, 4 mL/kg per 5 min, i.v.). Twenty-four hours after IO, rats were also submitted to enterectomy/enteroanastomosis to resection of necrotized small bowel. Leukocyte-endothelial interactions were investigated by intravital microscopy and the expression of P-selectin and intercellular adhesion molecule 1 by immunohistochemistry. Bacterial cultures of mesenteric lymph nodes, liver, spleen, and blood were used to evaluate BT. Levels of chemokines (cytokine-induced neutrophil chemoattractants 1 and 2), insulin, and corticosterone were determined by enzyme-linked immunosorbent assay. Intestinal histology, serum urea and creatinine levels, and hepatic enzymes activities were performed to evaluate local and remote damage. Relative to IO and LR-treated rats, which exhibited increases in the number of rolling (1.5-fold), adhered (3.5-fold) and migrated (9.0-fold) leukocytes, and increased expression of P-selectin (3-fold) and intercellular adhesion molecule 1 (3-fold) on mesenteric microcirculation, treatment with HS followed by enterectomy reduced leukocyte-endothelial interactions and expression of both adhesion molecules to values attained in sham rats. Serum chemokines were normalized after treatment with both solutions followed by enterectomy. Hypertonic saline-treated rats demonstrated a significant reduction in BT to 50% in liver and spleen samples and bacteremia (14%), compared with 82% of BT in liver and spleen samples of IO and LR-treated rats and bacteremia (57%). Local intestinal damage was attenuated, and renal and hepatic function preserved by treatment with HS followed by enterectomy. Survival rate increased to 86% up to 15 days. Data presented suggest that HS solution followed by enterectomy reduces mesenteric microcirculatory dysfunctions and BT, attenuating local and remote damage in a model of strangulated small bowel obstruction.
Read full abstract