The combustion characteristics of high-speed ejector mode in a 2-dimensional strut-based RBCC (rocket-based combined cycle) combustor had been investigated numerically in a Mach 2.5 supersonic flow. The numerical approach had been validated by comparing numerical results with available experimental data. Besides, three different hydrogen-air chemical reaction mechanisms had also been compared. The effect of the combustor geometry on the combustion process was then discussed by analyzing the heat release distribution and flow field. It was found that the wall configuration, closeout angle of the converging location and converging ratio all have significant influences on the heat release distribution and flow field structures. It is demonstrated that a converging–diverging wall configuration is beneficial for the combustion process with significant heat release increase compared to the other wall configurations. In addition, the closeout angle of the converging location is also closely related to the combustion performance, and there exists an optimized closeout angle in a specific combustor geometry. It is also revealed that the major heat release region moves upstream obviously with increase in the converging ratio, leading to an enhanced combustion process. However, the converging ratio is still to be optimized to keep a balance between heat release increase and total pressure loss of the supersonic flow.