Long-term morphine use for therapeutic approaches may lead to serious side effects. Several studies have suggested opioid antagonist and antioxidant therapy for reducing adverse effects of morphine. Cinnamaldehyde has a potent anti-oxidant property. In this study, separate and combined effects of cinnamaldehyde and naloxone (an opioid receptor antagonist) on behavioral changes and cerebellar histological and biochemical outcomes were investigated after long-term morphine administration. Seventy-eight rats were divided into two major morphine-treated and morphine-untreated groups. Morphine-treated group was subdivided into seven subgroups for receiving vehicle, normal saline, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and cinnamaldehyde plus naloxone before morphine. Morphine-untreated group was subdivided into six subgroups and treated with vehicle, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and their combination. Chemical compounds were administered for 28 consecutive days. Behavioral tests including footprint, rotarod, and beam balance tests were employed. Histopathological and biochemical alterations of cerebellum were determined. Body and cerebellum weights, stride width, time spent on the rotarod, Purkinje cell number, thickness of molecular and granular layers, superoxide dismutase (SOD), and total antioxidant capacity (TAC) decreased as a result of administrating morphine. Morphine increased beam transverse time, malondealdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 levels. Histopathological changes such as cellular vacuolation and loss were also produced as a result of treatment with morphine. Cinnamaldehyde, naloxone, and their combination treatments improved all the above-mentioned alterations induced by morphine. We concluded that cinnamaldehyde produced a neuroprotective effect through anti-oxidant, anti-inflammatory, apoptotic, and probably naloxone-sensitive opioid receptor interaction mechanisms.
Read full abstract