Biological pretreatment can promote the degradation of biomass and enhance methane production via the subsequent anaerobic digestion. In addition, a large amount of bio-heat can be generated during the pretreatment process to provide heat for the anaerobic digestion process. In this study, composite microorganisms were employed for pretreating corn straw. The impact of different pretreatment times and the heat generated by the pretreatment process on subsequent anaerobic digestion were studied. The results show that the maximum temperature of the pretreatment process was 56.2 °C, obtained on day 6. After 14 days of pretreatment, the degradation rate of the pretreatment group increased by 41% compared with the control group. As a consequence, straws with different pretreatment times were used for anaerobic digestion. The group that underwent 6 days of pretreatment and utilized bio-heat generated from pretreatment achieved the highest cumulative methane production of 401.58 mL/g VS, which was 60.13% higher than in the control group without pretreatment. After 6 days of composite microorganism pretreatment, the group that utilized bio-heat achieved a 29.08% increase in cumulative methane production compared to the group that did not utilize bio-heat. In conclusion, this study highlights the potential of biological pretreatment with composite microorganisms followed by anaerobic digestion using bio-heat as an effective method for treating corn straw.