This study examined the impact of abrasive slurry assisted Rotating Ultrasonic Machining (RUM) using Boron Carbide (B4C) powder of three mesh sizes: 400 Mesh, 600 Mesh, and 800 Mesh. The effects of abrasive size, feed rate, and tool rotation on Material Removal Rate (MRR) and Surface Roughness (SR) were investigated. The highest MRR of 3.454 mm³/min was achieved with 400 mesh, 30 mm/min feed rate, and 1250 rpm due to larger abrasive size, medium feed rate, and medium tool rotation velocity, while the lowest MRR of 0.284 mm³/min was noted with 600 mesh, 30 mm/min feed rate, and 1500 rpm, attributed to intermediate abrasive size and high tool rotation. The lowest SR of 1.16 μm was observed at 800 mesh, 15 mm/min feed rate, and 1500 rpm, resulting from smaller abrasive size and higher tool rotation facilitating polishing action and vibrational dampening. The highest SR of 3.71 μm occurred at 400 mesh, 45 mm/min feed rate, and 1500 rpm, due to larger abrasive size, higher feed rate, and tool rotation, increasing surface corrosion. ANOVA and regression analyses highlighted mesh size as the most significant parameter for both MRR and SR, with strong model-experimental value correlations. The findings demonstrate the suitability of abrasive slurry assisted RUM for fabricating micro-channels in X-Ray, optoelectronic, and semiconductor applications.