This study aims to investigate the association between the natural level of blood biomarkers and electroencephalographic (EEG) markers. Resting EEG theta, alpha (ABP), beta, and gamma frequency band powers were selected as linear EEG markers indicating the level of EEG power, and Higuchi's fractal dimension (HFD) as a nonlinear EEG complexity marker reflecting brain temporal dynamics. The impact of seven different blood biomarkers, i.e., glucose, protein, lipoprotein, HDL, LDL, C-reactive protein, and cystatin C, was investigated. The study was performed on a group of 52 healthy participants. The results of the current study show that one linear EEG marker, ABP, is correlated with protein. The nonlinear EEG marker (HFD) is correlated with protein, lipoprotein, C-reactive protein, and cystatin C. A positive correlation with linear EEG power markers and a negative correlation with the nonlinear complexity marker dominate in all brain areas. The results demonstrate that EEG complexity is more sensitive to the natural level of blood biomarkers than the level of EEG power. The reported novel findings demonstrate that the EEG markers of healthy people are influenced by the natural levels of their blood biomarkers related to their everyday dietary habits. This knowledge is useful in the interpretation of EEG signals and contributes to obtaining information about people quality of life and well-being.
Read full abstract