Abstract
This study explores the efficacy of various EEG complexity measures in detecting mind wandering during video-based learning. Employing a modified probe-caught method, we recorded EEG data from participants engaged in viewing educational videos and subsequently focused on the discrimination between mind wandering (MW) and non-MW states. We systematically investigated various EEG complexity metrics, including metrics that reflect a system’s regularity like multiscale permutation entropy (MPE), and metrics that reflect a system’s dimensionality like detrended fluctuation analysis (DFA). We also compare these features to traditional band power (BP) features. Data augmentation methods and feature selection were applied to optimize detection accuracy. Results show BP features excelled (mean area under the receiver operating characteristic curve (AUC) 0.646) in datasets without eye-movement artifacts, while MPE showed similar performance (mean AUC 0.639) without requiring removal of eye-movement artifacts. Combining all kinds of features improved decoding performance to 0.66 mean AUC. Our findings demonstrate the potential of these complexity metrics in EEG analysis for mind wandering detection, highlighting their practical implications in educational contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.