Abstract
Depression is currently one of the most complicated public health problems with the rising number of patients, increasing partly due to pandemics, but also due to increased existential insecurities and complicated aetiology of disease. Besides the tsunami of mental health issues, there are limitations imposed by ambiguous clinical rules of assessment of the symptoms and obsolete and inefficient standard therapy approaches. Here we are summarizing the neuroimaging results pointing out the actual complexity of the disease and novel attempts to detect depression that are evidence-based, mostly related to electrophysiology. It is repeatedly shown that the complexity of resting-state EEG recorded in patients suffering from depression is increased compared to healthy controls. We are discussing here how that can be interpreted and what we can learn about future effective therapies. Also, there is evidence that novel options of treatment, like different modalities of electromagnetic stimulation, are successful just because they are capable of decreasing that aberrated complexity. And complexity measures extracted from electrophysiological signals of depression patients can serve as excellent features for further machine learning models in order to automatize detection. In addition, after initial detection and even selection of responders for further therapy route, it is possible to monitor the therapeutic flow for one person, which leads us to possible tailored treatment for patients suffering from depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.