We consider an extended version of sabotage games played over Attack Graphs. Such games are two-player zero-sum reachability games between an Attacker and a Defender. This latter player can erase particular subsets of edges of the Attack Graph. To reason about such games we introduce a variant of Sabotage Modal Logic (that we call Subset Sabotage Modal Logic) in which one modality quantifies over non-empty subset of edges. We show that we can characterize the existence of winning Attacker strategies by formulas of Subset Sabotage Modal Logic.
Read full abstract