Abstract
An edge subset F of a connected graph G is a super edge cut if G − F is disconnected and every component of G−F has atleast two vertices. The minimum cardinality of super edge cut is called super edge connectivity number and it is denoted by λ'(G). Every arithmetic graph G = Vn, n not equal to p1 × p2 has super edge cut. In this paper, the authors study super edge connectivity number of an arithmetic graphs G = Vn, n = p_1^a_1 × p_2^a_2 , a1 > 1, a2 ≥ 1, and G = Vn, n = p_1^a_1 × p_2^a_2 × · · · ×p_r^a_r , r > 2, ai ≥ 1, 1 ≤ i ≤ r.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.