Protostellar jets and outflows are essential ingredients of the star formation process. A better understanding of this phenomenon is important in its own right as well as for many fundamental aspects of star formation. Jets and outflows associated with O-type protostars are rarely studied with observations reaching the close vicinity of the protostars. In this work, we report high-resolution ALMA and VLBA observations to reveal a clear and consistent picture of an outflow associated with an O-type protostar candidate in the G26.50+0.28 region. These observations reveal, for the first time, a collimated jet located in the middle of the outflow cavity. The jet is found to be perpendicular to an elongated disk/toroid and its velocity gradient. The collimated jet appears to show a small amplitude (α≈0°.06) counterclockwise precession, when looking along the blueshifted jet axis from the strongest continuum source MM1, with a precession length of 0.22 pc. The inclination of the jet is likely to be very low (≈8°), which makes it a promising target to study its transverse morphologies and kinematics. However, no clear evidence of jet rotation is found in the ALMA and VLBA observations. The three-dimensional velocities of the water maser spots appear to show the same absolute speed with respect to different opening angles, suggesting the jet winds may be launched in a relatively small region. This favors the X-wind model, that is, jets are launched in a small area near the inner disk edge.
Read full abstract