Abstract

Proper estimation of the cup-to-disc ratio (C/D ratio) plays a significant role in ophthalmic examinations, and it is urgent to improve the efficiency of C/D ratio automatic measurement. Therefore, we propose a new method for measuring the C/D ratio of OCTs in normal subjects. Firstly, the end-to-end deep convolution network is used to segment and detect the inner limiting membrane (ILM) and the two Bruch's membrane opening (BMO) terminations. Then, we introduce an ellipse fitting technique to post-process the edge of the optic disc. Finally, the proposed method is evaluated on 41 normal subjects using the optic-disc-area scanning mode of three machines: BV1000, Topcon 3D OCT-1, and Nidek ARK-1. In addition, pairwise correlation analyses are carried out to compare the C/D ratio measurement method of BV1000 to existing commercial OCT machines as well as other state-of-the-art methods. The correlation coefficient between the C/D ratio calculated by BV1000 and the C/D ratio calculated by manual annotation is 0.84, which indicates that the proposed method has a strong correlation with the results of manual annotation by ophthalmologists. Moreover, in comparison between BV1000, Topcon and Nidek in practical screening among normal subjects, the proportion of the C/D ratio less than 0.6 calculated by BV1000 accounts for 96.34%, which is the closest to the clinical statistics among the three OCT machines. The above experimental results and analysis show that the proposed method performs well in cup and disc detection and C/D ratio measurement, and compared with the existing commercial OCT equipment, the C/D ratio measurement results are relatively close to reality, which has certain clinical application value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.