This paper presents a method for the performance analysis of high-speed electric machines supplied with pulse-width modulated voltage source inverters by utilizing a fast analytical model. By applying a strict mathematical procedure, effective expressions for the calculation of rotor eddy current losses and electromagnetic torque are derived. Results obtained by the approach suggested in this study are verified by the finite element model, and it is shown that the proposed method is superior in comparison to the finite element method in terms of computation time. The proposed method enables fast parameter variation analysis, which is demonstrated by changing the inverter switching frequency and electric conductivity of the rotor and analyzing the effects of these changes on rotor eddy current losses. The presented work separately models effects of the permanent magnet and pulse-width modulated stator currents, making it suitable for the analysis of both high-speed permanent magnet machines and high-speed induction machines.