Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate.
Read full abstract