Effluent-containing dye molecules is a significant environmental hazard. An economical and energy-saving solution is needed to combat this issue for the purpose of environmental sustainability. In this study, Fe-Ni-Co-based trimetallic nanocomposite was synthesized using the coprecipitation method. Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infra-Red spectroscopy were conducted to explore the physical morphology, phase structure and functional groups of the synthesized catalyst. Among dyes, methyl orange is considered as a major contaminant in textile effluent. The current study focused on the degradation of methyl orange using a trimetallic Fe-Ni-Co-based nanocomposite. A central composite design in response surface methodology was employed to analyze the independent variables including dye concentration, catalyst dose, temperature, hydrogen peroxide, irradiation time, and pH. Dye degradation has been achieved up to 81% in 20 min at the lowest initial concentration (5 mg/L) in optimized conditions. Based on ANOVA, the predicted values were in great agreement with the actual values, signifying the applicability of response surface methodology in the photocatalytic decolorization of dyeing effluents. The results gained from this research demonstrated that the synthesis method of trimetallic nanocomposite (Iron Triad) is a cost-effective and energy efficient method that can be scaled up to a higher level for industrial application.