This study utilized modeling and simulation to examine the effectiveness of current and potential future COVID-19 response interventions in the West African countries of Guinea, Liberia, and Sierra Leone. A comparison between simulations can highlight which interventions could have an effect on the pandemic in these countries. An extended compartmental model was used to run simulations incorporating multiple vaccination strategies and non-pharmaceutical interventions (NPIs). In addition to the customary categories of susceptible, exposed, infected, and recovered (SEIR) compartments, this COVID-19 model incorporated early and late disease states, isolation, treatment, and death. Lessons learned from the 2014–2016 Ebola virus disease outbreak—especially the optimization of each country’s resource allocation—were incorporated in the presented models. For each country, models were calibrated to an estimated number of infections based on actual reported cases and deaths. Simulations were run to test the potential future effects of vaccination and NPIs. Multiple levels of vaccination were considered, based on announced vaccine allocation plans and notional scenarios. Increased vaccination combined with NPI mitigation strategies resulted in thousands of fewer COVID-19 infections in each country. This study demonstrates the importance of increased vaccinations. The levels of vaccination in this study would require substantial increases in vaccination supplies obtained through national purchases or international aid. While this study does not aim to develop a model that predicts the future, it can provide useful information for decision-makers in low- and middle-income nations. Such information can be used to prioritize and optimize limited available resources for targeted interventions that will have the greatest impact on COVID-19 pandemic response.
Read full abstract