Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.