Retinal vascular diseases such as neovascular age-related macular degeneration (nAMD) are the leading cause of blindness worldwide. They can be treated with intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents by inhibiting VEGF which is a major agent of abnormal blood vessel growth. However, because of drug's short half-life, clinical treatment often requires monthly repeated intravitreal injections, causing treatment burden and undertreatment. Among various kinds of drug carriers, in situ forming hydrogels have been studied as potential intravitreal drug carriers for the high drug loading, easy injection, controlled drug release, and protection of encapsulated drugs from the environment. However, gelation time, crosslinking degree, and drug release patterns following injection of a liquid that will be subsequently gelled in situ are susceptible to be hindered by dilution of the hydrogel precursor solution with body fluids (e.g., blood or vitreous). Here, we report an injectable pre-crosslinked hydrogel rod to overcome the limitations of in situ forming hydrogels and to extend intravitreal half-life of anti-VEGF for reducing intraocular injection frequency. Hydrogel rods can be simply prepared using in situ forming hydrogels, and injectable using a designed rod injector. The adjustable crosslinking degree of hydrogel rods easily controlled bevacizumab release profiles in a sustained manner. Compared with in situ forming hydrogels, hydrogel rods effectively reduced initial burst release, and showed sustained release with long-term drug efficacy in vitro. From the 4-month in vivo pharmacokinetic analysis, following the intravitreal injection of hydrogel rods, the half-life of bevacizumab in the vitreous and retina was significantly extended, and drug elimination to aqueous humor was effectively reduced. Finally, intraocular stability, degradation, and inflammatory response of hydrogel rods were evaluated. We expect that the hydrogel rod can be a potential drug delivery system for the treatment of nAMD and other conditions that need long-term and local sustained drug administration. STATEMENT OF SIGNIFICANCE: Herein, we report an injectable pre-crosslinked hydrogel rod based on an in situ forming hydrogel to achieve intravitreal long-acting anti-VEGF delivery to reduce injection frequency and improve the long-term visual outcomes of patients with retinal vascular diseases. Hydrogel rods were readily prepared using removable molds and injected using customized injectors. Compared to the in situ forming hydrogel, hydrogel rods showed significantly reduced initial burst release, controllable release profiles for several months, physical stability, and a long-acting anti-angiogenic effect. Animal studies demonstrated that the hydrogel rods dramatically prolonged the intraocular drug half-life while significantly reducing drug elimination for up to four months. Moreover, the biodegradability and safety of the hydrogel rods suggest their suitability as an advanced intravitreal DDS for treating retinal vascular diseases.