Often overlooked, these small but otherwise brilliant plants began covering Earth's land masses more than 450 million years ago. They saw the dinosaurs come and go, and they saw us humans coming. Mosses, liverworts and hornworts comprise the bryophytes, the second largest monophyletic clade of land plants (embryophytes), after the vascular plants (tracheophytes). Like all embryophytes, mosses exhibit a haplodiplontic life cycle. This alternation of generations (originally termed Generationswechsel in German) between the haploid gametophyte and the diploid sporophyte implies that every plant genome encodes two distinct ontogenies, in contrast to animal genomes. Contrary to tracheophytes, the haploid gametophyte is the dominant generation in mosses. Haploidy of the major tissues facilitates gene-function annotation via reverse genetics. Nevertheless, the diploid sporophyte of mosses, the spore capsule, is a visible structure unlike the gametophyte of flowering plants, which is largely reduced and embedded in the sporophyte. Visibility of both generations on one plant facilitates the analysis of the alternation of generations, and in a broader sense evo-devo studies. Whereas the conservation of moss morphology over hundreds of millions of years suggests stasis, molecular data reveal fast evolving moss genomes, leaving an enigma for evolutionary biologists. Finally, the extraordinary resilience of mosses may provide lessons for current man-made climate change. In this Primer, we will highlight some of the peculiarities of mosses from historical observations to current genomic data, with an emphasis on their development, reproduction, evolution, biotic interactions, and potential for biotechnology. Mosses from three genera - the living fossil Takakia, the ecosystems engineer Sphagnum, and the model moss Physcomitrella - exemplify the scientific insights and the applications mosses have to offer.
Read full abstract