The rupture of atherosclerotic plaques remains one of the leading causes of morbidity and mortality worldwide. The plaques have certain pathological characteristics including a fibrous cap, inflammation, and extensive lipid deposition in a lipid core. Various invasive and noninvasive imaging techniques can interrogate structural aspects of atheroma; however, the composition of the lipid core in coronary atherosclerosis and plaques cannot be accurately detected. Fiber-optic Raman spectroscopy has the capability of in vivo rapid and accurate biomarker detection as an emerging omics technology. Previous studies demonstrated that an intravascular Raman spectroscopic technique may assess and manage the therapeutic and medication strategies intraoperatively. The Raman spectral information identified plaque depositions consisting of lipids, triglycerides, and cholesterol esters as the major components by comparing normal region and early plaque formation region with histology. By focusing on the composition of plaques, we could identify the subgroups of plaques accurately and rapidly by Raman spectroscopy. Collectively, this fiber-optic Raman spectroscopy opens up new opportunities for coronary atherosclerosis and plaque detection, which would assist optimal surgical strategy and instant postoperative decision-making. In this paper, we will review the advancement of label-free fiber-optic Raman probe spectroscopy and its applications of coronary atherosclerosis and atherosclerotic plaque detection.
Read full abstract