ABSTRACTUnderstanding the hydrological impacts of climate change is essential for robust and sustainable water management. This study assessed the hydrologic conditions under changing climate in the Jinshajiang River basin, the source region of the Yangtze River, using the hydrological model SWAT with the historical observations and the future climate simulations under two Shared Socioeconomic Pathways (SSP2‐4.5 and SSP5‐8.5). For the historical period, with an increasing trend of precipitation, evapotranspiration, and snowmelt, streamflow increases in upstream region but keeps decreasing in the downstream catchment. For future scenarios, a warmer and wetter climate is projected for the basin throughout the 21st century, leading to an overall increase in mean and extreme streamflow. The streamflow magnitude increases more significantly in the far future than in the near future, and more significant under SSP5‐8.5 than SSP2‐4.5. The projected remarkable increase in precipitation causes the transition in changing trend of streamflow compared with the historical period. The projected warming leads to a continuing decline in snowfall and snow water equivalent, followed by an earlier snowmelt and higher peak streamflow, especially at the upstream catchment. Ultimately, reservoirs in the basin are expected to gain more inflows, however, with greater variability including higher likelihoods of flood and drought events, which impose potential challenges on reservoir operations. These outcomes indicate the importance of adaptive water resources management in the melting water contributed basin to sustain and enhance its services under global warming.