Abstract

Climate change is leading to advanced snowmelt date in alpine regions. Consequently, alpine plant species and ecosystems experience substantial changes due to prolonged phenological seasons, while the responses, mechanisms and implications remain widely unclear. In this 3-year study, we investigated the effects of advancing snowmelt on the phenology of alpine snowbed species. We related microclimatic drivers to species and ecosystem phenology using in situ monitoring and phenocams. We further used predictive modelling to determine whether early snowmelt sites could be used as sentinels for future conditions. Temperature during the snow-free period primarily influenced flowering phenology, followed by snowmelt timing. Salix herbacea and Gnaphalium supinum showed the most opportunistic phenology, while annual Euphrasia minima struggled to complete its phenology in short growing seasons. Phenological responses varied more between years than sites, indicating potential local long-term adaptations and suggesting these species' potential to track future earlier melting dates. Phenocams captured ecosystem-level phenology (start, peak and end of phenological season) but failed to explain species-level variance. Our findings highlight species-specific responses to advancing snowmelt, with snowbed species responding highly opportunistically to changes in snowmelt timings while following species-specific developmental programs. While species from surrounding grasslands may benefit from extended growing seasons, snowbed species may become outcompeted due to internal-clock-driven, non-opportunistic senescence, despite displaying a high level of phenological plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.