Developmental dyslexia is a disorder characterized by a specific deficit in reading despite adequate overall intelligence and educational resources. The neurological substrate underlying these significant behavioral impairments is not known. Studies of post mortem brain tissue from male and female dyslexic individuals revealed focal disruptions of neuronal migration concentrated in the left hemisphere, along with aberrant symmetry of the right and left the planum temporale, and changes in cell size distribution within the medial geniculate nucleus of the thalamus (Galaburda et al., 1985; Humphreys et al., 1990). More recent neuroimaging studies have identified several changes in the brains of dyslexic individuals, including regional changes in gray matter, changes in white matter, and changes in patterns of functional activation. In a further effort to elucidate the etiology of dyslexia, epidemiological and genetic studies have identified several candidate dyslexia susceptibility genes. Some recent work has investigated associations between some of these genetic variants and structural changes in the brain. Variants of one candidate dyslexia susceptibility gene, KIAA0319, have been linked to morphological changes in the cerebellum and functional activational changes in the superior temporal sulcus (Jamadar et al., 2011; Pinel et al., 2012). Animal models have been used to create a knockdown of Kiaa0319 (the rodent homolog of the human gene) via in utero RNA interference in order to study the gene's effects on brain development and behavior. Studies using this animal model have demonstrated that knocking down the gene leads to focal disruptions of neuronal migration in the form of ectopias and heterotopias, similar to those observed in the brains of human dyslexics. However, further changes to the structure of the brain have not been studied following this genetic disruption. The current study sought to determine the effects of embryonic Kiaa0319 knockdown on volume of the cortex and hippocampus, as well as midsagittal area of the corpus callosum in male rats. Results demonstrate that Kiaa0319 knockdown did not change the volume of the cortex or hippocampus, but did result in a significant reduction in the midsagittal area of the corpus callosum. Taken in the context of previous reports of behavioral deficits following Kiaa0319 knockdown (Szalkowski et al., 2012), and reports that reductions of corpus callosum size are related to processing deficits in humans (Paul, 2011), these results suggest that Kiaa0319 has a specific involvement in neural systems important for temporal processing.
Read full abstract