ContextAging is a major risk factor for various neurodegenerative diseases, and ferroptosis has been identified as an important mode of cell death during accelerated aging. As the main component of the edible plant YuZhu in China, Polygonatum polysaccharide (POP) is an important natural compound with anti-aging properties. ObjectiveTo evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved and to evaluate the overall anti-aging effects of POP on cognitive impairment due to accelerated aging. Materials and methodsA D-galactose (D-gal)-induced accelerated aging rat model was established to evaluate the anti-aging effects of POP and the underlying molecular mechanisms involved. In turn, Morris water maze and open field experiments were used to evaluate the anti-aging effects of POP on cognitive impairment due to accelerated aging. ResultsThe mechanism by which POP affects nuclear factor E2-related factor 2 (Nrf2), an essential transcription factor, was confirmed. POP significantly improved d-gal-induced cognitive dysfunction in treated model rats, which exhibited reduced pathological changes in the hippocampus, reduced latency of the water maze platform, and increased exploration time in the central area in the open field experiment compared to those of untreated model rats. Furthermore, POP intervention downregulated ferroptosis-related proteins and upregulated Nrf2 expression, and selective inhibition of Nrf2 eliminated the ability of POP to reduce ferroptosis. ConclusionsPOP is a natural ingredient with therapeutic potential due to its ability to alleviate aging by activating Nrf2, inhibiting ferroptosis, and alleviating cognitive dysfunction.
Read full abstract