Abstract

BackgroundCognitive impairment, which includes perioperative psychological distress and cognitive dysfunction, can be determined by preoperative and post-operative neuropsychological tests. Several mechanisms have been proposed regarding the two-way communication between the immune system and the brain after surgery. We aimed to understand the mechanisms underlying perioperative neurocognitive disorders (PND) in elderly rats using an experimental abdominal surgery model. Methods24-month-old SD rats were exposed to the abdominal surgery model (AEL) under 3% anesthesia. On day 15 and day 30 post-surgery, fractional anisotropy (FA) using diffusion kurtosis imaging (DKI) was measured. From day 25 to day 30 post-surgery, behavioral tests, including open field test (OFT), Morris water maze (MWM), novel object recognition (NOR), force swimming test (FST), and elevated plus maze (EPM), were performed. Then, the rats were euthanized to perform pathological analysis and western blot measurement. ResultsThe rats exposed to AEL surgical treatment demonstrated significantly decreased time crossing the platform in the MWM, decreased recognition index in the NOR, reduced time in the open arm in the EPM, increased immobility time in the FST, and increased number of crossings in the OFT. Aged rats, after AEL exposure, further demonstrated decreased FA in the mPFC, nucleus accumbens (NAc), and hippocampus, together with reduced MAP2 intensity, attenuation of GAD65, VGlut2, CHAT, and phosphorylated P38MAPK expression, and increased reactive astrocytes and microglia. ConclusionsIn this study, the aged rats exposed to abdominal surgery demonstrated both emotional changes and cognitive dysfunction, which may be associated with neuronal degeneration and reduced phosphorylated P38MAPK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call