Dynamics of femtosecond pulses with the telecom carrier wavelength is investigated numerically in a subwavelength layer of an indium tin oxide (ITO) epsilon-near-zero (ENZ) material with high dispersion and high nonlinearity. Due to the subwavelength thickness of the ITO ENZ material, and the fact that the pulse's propagation time is shorter than its temporal width, multiple reflections give rise to self-interaction in both spectral and temporal domains, especially at wavelengths longer than at the ENZ point, at which the reflections are significantly stronger. A larger absolute value of the pulse's chirp strongly affects the self-interaction by redistributing energy between wavelengths, while the sign of the chirp affects the interaction in the temporal domain. It is also found that, when two identical pulses are launched simultaneously from both ends, a subwavelength counterpart of a standing-wave state can be established. It shows robust energy localization in the middle of the sample, in terms of both the spectral and temporal intensity distributions.
Read full abstract