Abstract

We present a theoretical investigation of the self-focusing dynamics of femtosecond pulses in a hollow waveguide. We show that transverse effects play an important role in these dynamics, even for pulses that are significantly below the critical power for self-focusing in free space, and that excitation of higher-order modes of the waveguide results in the spreading of the pulse in time. Inclusion of self-steepening and space-time focusing in our model is necessary for properly capturing the pulse dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.