High-entropy alloys, since their development, have demonstrated great potential for applications in extreme temperatures. This article reviews recent progress in their mechanical performance, microstructural evolution, and deformation mechanisms at low and high temperatures. Under low-temperature conditions, the focus is on alloys with face-centered cubic, body-centered cubic, and multi-phase structures. Special attention is given to their strength, toughness, strain-hardening capacity, and plastic-toughening mechanisms in cold environments. The key roles of lattice distortion, nanoscale twin formation, and deformation-induced martensitic transformation in enhancing low-temperature performance are highlighted. Dynamic mechanical behavior, microstructural evolution, and deformation characteristics at various strain rates under cold conditions are also summarized. Research progress on transition metal-based and refractory high-entropy alloys is reviewed for high-temperature environments, emphasizing their thermal stability, oxidation resistance, and frictional properties. The discussion reveals the importance of precipitation strengthening and multi-phase microstructure design in improving high-temperature strength and elasticity. Advanced fabrication methods, including additive manufacturing and high-pressure torsion, are examined to optimize microstructures and improve service performance. Finally, this review suggests that future research should focus on understanding low-temperature toughening mechanisms and enhancing high-temperature creep resistance. Further work on cost-effective alloy design, dynamic mechanical behavior exploration, and innovative fabrication methods will be essential. These efforts will help meet engineering demands in extreme environments.
Read full abstract