ABSTRACT Inexorable urbanization continues apace across the world and urban flooding in megacities is now frequently evidenced due to extreme rainfall events due to climate change (CC). Climate-resilient urban drainage planning is critical towards making sustainable cities or any new urbanization. This paper presents an approach through an insightful assessment of climate resilient urban drainage applying GIS-based Soil Conservation Service-Curve Number (SCS-CN) model of a new urban growth of megacity Dhaka, Bangladesh. A precise DEM (Digital Elevation Model) of the study area has been used for catchment delineation using ArcSWAT. Localized climate anomalies of rainfall of around 11% have been identified during monsoon from statistical downscaling and included in the cumulative rainfall event of 5 days. The effect of historical and CC-induced rainfall have been used to identify and map the peak discharges of sub-catchments considering the return period of 5-day cumulative rainfall for 10, 25, and 100 years of the urban catchment for both existing and future land-use scenarios accounting for the change in CN. The varying results of the peak discharges of the sub-catchments for resilient drainage planning is not only dependent on the increase in rainfall but also the combined response of the land-use and soil profile.