AbstractIn order to ensure safe and comfortable human–robot navigation in close proximity, it is imperative for robots to possess the capability to understand human behavioral intention. With this objective in mind, this paper introduces a Human-Aware Navigation (HAN) algorithm. The HAN system combines insights from studies on human detection, social behavioral model, and behavior prediction, all while incorporating social distance considerations. This information is integrated into a layer dedicated to human behavior intention cognition, achieved through the fusion of data from laser radar and Kinect sensors, employing Gaussian functions to account for individual private space and movement trend. To cater to the mapping requirements of the HAN system, we have reduced the computational complexity associated with traditional multilayer cost map by implementing a “first-come, first-served” expansion method. Subsequently, we have enhanced the trajectory optimization equation by incorporating an improved dynamic triangle window method that integrates human behavior intention cognition, leading to the determination of an appropriate trajectory for the robot. Finally, experimental evaluations have been conducted to assess and validate the efficacy of the human behavior intention cognition and the HAN system. The results clearly demonstrate that the HAN system outperforms the traditional Dynamic Window Approach algorithm in ensuring the safety and comfort of humans in human–robot coexistence environments.
Read full abstract