Abstract

Effective management and monitoring of radioactive sources are crucial to ensuring nuclear safety, human health, and the ecological environment. A multi-robot collaborative radioactive source search algorithm based on particle swarm optimization particle filters is proposed. In this algorithm, each robot operates as a mobile observation platform using the latest observations to fuse into particle sampling. At the same time, the particle swarm optimization algorithm moves the particle set to a high-likelihood area to overcome particle degradation. In addition, each particle can learn from the search history of other particles to speed up the convergence of the algorithm. Lastly, the Dynamic Window Approach (DWA) for dynamic window obstacle avoidance is used to avoid obstacles in complex mountainous terrains to achieve efficient source search. Experimental results show that the search success rate of the proposed algorithm is as high as 95%, and its average search time is only 3.43 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.