Abstract

This paper uses a bioinspired neurodynamic (BIN) approach to investigate the formation control problem of leader-follower nonholonomic multiagent systems. In scenarios where not all followers can receive the leader's state, a distributed adaptive estimator is presented to estimate the leader's state. The distributed formation controller, designed using the backstepping technique, utilizes the estimated leader states and neighboring formation tracking error. To address the issue of impractical velocity jumps, a BIN-based approach is integrated into the backstepping controller. Furthermore, considering the practical applications of nonholonomic multiagent systems, a backstepping controller with a saturation velocity constraint is proposed. Rigorous proofs are provided. Finally, the effectiveness of the presented formation control law is illustrated through numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.