Abstract
This paper mainly addresses formation control problem of non-holonomic systems in an optimized manner. Instead of using linearization to solve this problem approximately, we designed control laws with guaranteed global convergence by leveraging nonlinear transformations. Under this nonlinear transformation, consensus of non-holonomic robots can be converted into a stabilization problem, to which optimal treatment applies. This concept is then extended to the formation control and tracking problem for a team of robots following leader-follower strategy. A trajectory generator prescribes the feasible motion of virtual reference robot, a decentralized control law is used for each robot to track the reference while maintaining the formation. The asymptotic convergence of follower robots to the position and orientation of the reference robot is ensured using the Lyapunov function which is also generated using chained form differential equations. In order to witness the efficacy of the scheme, simulations results are presented for Unicycle and Car-like robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.