Abstract
In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, in order to generate and keep the desired formation, a Fuzzy Logic Controller is designed. In this regard, the leader mobile robot is controlled to follow a reference path and the follower robots use the Fuzzy Logic Controller to keep constant relative distance and constant angle with respect to the leader. The efficiency of the suggested dynamics-based formation controller has been proved using several computer simulations under different situations and desired trajectories. Also, the performance of the follower robot in path tracking is checked in the presence of receiving noisy data from the leader robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.