Abstract In this paper, we report a chemical way to resolve longer motions units in the glass-rubber transition region of poly (ethyl acrylate) (PEA), so called internal plasticization. The ethyl acrylate (EA) monomers were copolymerized with little amount of isoprene (IP) monomers. We propose that the single bonds adjunct to double bonds would have better flexible activity than usual single bonds, so the motion units located between two adjunct double bonds would be enhanced. The dynamic mechanical spectra of internally plasticized PEA (IPPEA) and PEA show that the tan δ of IPPEA is asymmetric, while the tan δ of PEA is symmetric. Furthermore, the results of 2D-DMAS show that the LSM, SRM and RM of IPPEA are located at 7 °C, 12 °C and 36 °C. The shoulder peak of tan δ of IPPEA at higher temperature side was confirmed that it contains sub-rouse mode (SRM) and rouse mode (RM). Thus, internal plasticization is an effective way to resolve modes above Tg.
Read full abstract