Tactile sensing has become indispensable for contact-rich dynamic robotic manipulation tasks. It provides robots with a better understanding of the physical environment, which is a vital supplement to robotic vision perception. Compared with other existing tactile sensors, vision-based tactile sensors (VBTSs) stand out for augmenting the tactile perception capabilities of robotic systems, owing to superior spatial resolution and cost-effectiveness. Despite their advantages, VBTS production faces challenges due to the lack of standardised manufacturing techniques and heavy reliance on manual labour. This limitation impedes scalability and widespread adoption. This paper introduces a rapid monolithic manufacturing technique and evaluates its performance quantitatively. We further develop and assess C-Sight, a novel VBTS sensor manufactured using this technique, focusing on its tactile reconstruction capabilities. Experimental results demonstrate that the monolithic manufacturing technique enhances VBTS production efficiency significantly. Also, the fabricated C-Sight sensor exhibits its reliable tactile perception and reconstruction capabilities, proofing the validity and feasibility of the monolithic manufacturing method.