Abstract
Subjective effort can significantly affect the ability of humans to act optimally in dynamic manipulation tasks. In a previous study, we designed a complex object coupling manipulation task that required tight performance and induced high cognitive workload. We hypothesize that strong-effort-related physiological reactivity during the dynamic manipulation task improves the user performance in an undesired task feedback situation. To test this hypothesis, using the motor intentions' discrimination from electroencephalogram (EEG) measurements, we evaluate the effort expended by 20 participants in a controlling task with constraints involving complex coupling objects. Specifically, the finer motor decisions are obtained from the controlling information in EEG by using two fingers from the same hand rather than two hands. The motor intention is decoded from a task-dependent EEG through a regularized discriminant analysis, and the area under the curve is [Formula: see text]. Furthermore, we compare the undesired and desired task feedback conditions along with the individual's effort dynamic adjustment, and investigate whether the undesired task feedback improved the discrimination of the motor activities. A stronger effort to attain the desired feedback state corresponds to improved motor activity discrimination from the EEG in the undesired task feedback scenario. The differences in the brain activities under the undesired and desired task feedback conditions are analyzed using brain-network-based topographical scalp maps. Our experiment provides preliminary evidence that inducing strong effort can improve discrimination performance during highly demanding tasks. This finding can advance our understanding of human attention, potentially improve the accuracy of intention recognition, and may inspire better EEG acquisition contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.