Orthotropic steel decks (OSDs) are inevitably subjected to fatigue damage caused by cycled vehicle loads in long-span bridges. This study establishes a probabilistic analysis framework integrating the dynamic Bayesian network (DBN) and fracture mechanics to model the fatigue crack propagation considering mutual correlations among multiple fatigue details. Both the observations of fatigue crack length from field inspection and monitoring data of vehicle loads from the weight-in-motion (WIM) system are utilized. First, fracture mechanics-based uncertainty analysis is performed to determine the multiple uncertainty sources in the Paris crack propagation model, material property, and observation data of crack length. The uncertainty of monitoring data of vehicle loads is ignored because of its high accuracy; consequently, the vehicle-load-related uncertainty is spontaneously ignored, which is also demonstrated to be very small on the investigated actual bridges. Second, a hierarchical DBN model is introduced to construct mutual dependencies among various uncertainties and intra-correlations in the propagation process of multiple fatigue cracks at different components. Third, a stochastic traffic model is established based on the WIM monitoring data and multi-scale finite element analysis via substructure techniques to determine the probability distribution of vehicle-load-related parameters. After variable discretization, a refined exact inference algorithm in a forward–backward–forward manner is adopted to estimate the posterior distribution of equivalent initial crack length and update the established DBN model. Finally, the proposed method is demonstrated by a numerical case study and a typical application on an actual cable-stayed bridge with steel box girders using OSDs in China. The results show that the probability distribution of equivalent initial crack size can be spontaneously derived with a larger mean value than the results of conventional empirical analysis. Furthermore, the component-level fatigue reliability is tracked and predicted based on the established crack propagation model.
Read full abstract