Large-size vehicle loaders are mainly used in various construction projects with complex working environment, which has a serious impact on the internal vibration of the whole system. In this study, the vibration characteristics of hydraulic planetary transmission of vehicle loader considering the influence of the external excitation are evaluated theoretically and experimentally. The output torque of the four-stroke six-cylinder diesel engine is obtained by force calculation of crank and connecting rod mechanism. The equivalent stiffness and damping of the torque converter are solved according to the torsional dynamic equation of the torque converter. The trapped oil area, oil pressure, and flow rate of gear meshing part are extracted to obtain the trapped oil pressure of variable-speed pump. Then, the multi-degree-of-freedom gear system dynamic model is established to calculate the meshing force, which is applied to vibration response analysis model by using mode superposition method. Lastly, the vibration response test is performed on the experimental prototype to verify the calculation method. The conclusion shows that the generation principle of external excitation and its calculation method in this paper are feasible in the analysis of dynamic characteristics of hydraulic planetary torque converter.